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S.1 The Inverse G-Wishart and Inverse 2 Distributions

The Inverse G-Wishart corresponds to the matrix inverses of random matrices that have a
G-Wishart distribution (e.g. Atay-Kayis & Massam, 2005). For any positive integer d, let G
be an undirected graph with d nodes labeled 1,...,d and set £/ consisting of sets of pairs
of nodes that are connected by an edge. We say that the symmetric d x d matrix M respects
G if

M;; =0 forall {i,j}¢E.

A d x d random matrix X has an Inverse G-Wishart distribution with graph G and param-
eters £ > 0 and symmetric d x d matrix A, written

X ~ Inverse-G-Wishart(G, &, A)
if and only if the density function of X satisfies
p(X) oc [ X| €422 exp{—Ler(A X 1)}

over arguments X such that X is symmetric and positive definite and X ! respects G.
Two important special cases are

G = Gy = totally connected d-node graph,

for which the Inverse G-Wishart distribution coincides with the ordinary Inverse Wishart
distribution, and

G = Gy = totally disconnected d-node graph,

for which the Inverse G-Wishart distribution coincides with a product of independent
Inverse Chi-Squared random variables. The subscripts of Gy, and G, reflect the fact that
X ~!is a full matrix and X ! is a diagonal matrix in each special case.

The G = Gy, case corresponds to the ordinary Inverse Wishart distribution. However,
with modularity in mind, we will work with the more general Inverse G-Wishart family
throughout this article.

In the d = 1 special case the graph G = G = G4, and the Inverse G-Wishart distri-
bution reduces to the Inverse Chi-Squared distributions. We write

x ~ Inverse-x2(&, \)

for this Inverse-G-Wishart(G ., &, A) special case with d = 1 and A > 0 scalar.

S.2 The Generalized Blockdiag Operator

If M1, M5 and M 5 are each 2 x 2 matrices then a well-established notation is
M; Ogzx2 O2x2
blockchag(MZ) = 02><2 M2 02><2

1<i<3
O3x2 O2x2 M3



where Osy5 denotes the 2 x 2 matrix of zeroes.
Suppose instead that M, is n x 2 where n = 0. Then M is null but here we allow its
column dimension to be a positive integer. The generalized blockdiag operator is such that

M 0] o
blockdiag(M;) = 1 2x2  O2x2
lsiss Ozx2 O2x2 M3

The key aspect is that, after positioning M, the column index is incremented by 2 before
positioning M 5. This is due to My being a “matrix” having generalized dimension 0 x 2.

The generalized blockdiag operator is useful for describing the design matrices that
arise from model (1). Suppose that m = 5, m' = 3, ¢ = 2 and that the n; values are as
given by Table S.1.

1=1 2 4 0
1=2 0 3 1
1=3 0 0 6
1=4 7 2 9
1=5 5 0 8

Table S.1: The n;; values for an illustrative example concerning the use of the generalized blockdiag
operator to describe cross random effects design matrices.

Then, according to the definitions given in Section 2.1 and the rules of the generalized
blockdiag operator:

n A Osyx95 O9 2_
! = blockdiag(Z},) = H /X =,

1<i'<3 | Oux2 Z7y Ouxs |

. [ O3x2 Zhy Osxo |
Z', = blockdiag(Z%;) = - - ,X ,

1<i'<3 | O1x2 O1x2 Zys |

Z/3 = blockdiag(Zgi,) = [O6><2 06><2 Zg3] y
1<¢/<3

[ Z) Orx2 Orxo
21 = blockdiag(ZﬁM/) = 02><2 Zim 02><2

1<i'<3 )
| Oox2 Ogx2 Zyg

| ] r Z/ O O
and Z; = blockdiag(Zs,) = 51 U5x2 5/><2 .
=3 | Osx2 Osx2 Zj3

Algorithm S.1 provides full details of the generalized blockdiag operator for general
input matrices, with some possibly having generalized dimension for which 0 is allowed.

S.3 Derivation of the q(3, u,,) Parameters Updates Under Product
Restriction I

The full conditional distribution of 3 is

p(Blrest) o« p(y|B,u,u', o*)p(B).



Algorithm S.1 The generalized blockdiag algorithm.

Inputs: {M; : 1 < i < d} where M, is an r; x ¢; generalized dimensioned matrix

for integers r; > 0 and ¢; > 0.

d d
A +— the (Zn) X (Zg) matrix of zeroes

i=1 i=1
T «— 1 5 Cop — 1
fori=1,...,m
Tend € Tstt + 75 — 1 ; Cend &— Csu +¢; — 1
ifr; >0and¢; >0
(rows rg tO Teng and columns ¢y to Ceng Of A) «— M;
Tet $— Tend + 1 ; Cop $— Cena + 1

Output: A

Note that p(y|8,u, v/, 5?) can be expressed as the N (X 3,02I) density function in the
vector
y— stack{ stack (vaui + Z;i/u;)}

1<i<m (1< <m/

Also, p(3) is the N (,uﬁ, 25) density function in the vector 8. Then, under product restric-
tion I, standard quadratic form manipulations lead to the optimal g-density function of 3
being that of the N (p,(g), ¥q(8)) distribution with updates
Kq(B) — (uq(g2)XTX+251)il (,U,q(UQ)XTT'—FEBllJ/gl) and Eq(ﬁ) — (,u,q(UQ)XTX—FEBl)il .
where

— !/

r=u - stack sk (Zurkoun + Ziottaosy) -

If b and B are defined according to the updates in (9) then simple algebra shows that
B"b = gy X 1+ 25'ng' and BTB = ) X7 X + 25"

Therefore, the p1,(3) update corresponds to the least squares solution = (BTB)"'BTb

and the update of 33 corresponds to (BTB)~L.
Analogous arguments can be used to justify the updates for the parameters of q(u;),
1 <i<m,andq(u}), 1 <& <m'

S.4 The SorveLeasTSouares Algorithm
The SOLVELEASTSQUARES is concerned with solving the least squares problem
min [|b — Bzx|?.
which has solution = (BT B) ™' BT b. The matrix (BT B)~! is also of intrinsic interest. In

next subsection a version of this problem is solved for the situation where B has two-level
sparse structure. In this subsection there is no sparseness structure imposed on B.

S.5 The SoLVETWOLEVELSPARSELEASTSQUARES Algorithm
The SOLVETWOLEVELSPARSELEASTSQUARES algorithm solves a sparse version of the the least

squares problem:
min ||b — Bx||?
xr
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Algorithm S.2 SOLVELEASTSQUARES for solving the least squares problem: minimise |b — B x||?
in « and obtaining (BT B)~".

Inputs: {b(n x 1), B(7v x p)}

Decompose B = Q [ 1: ] such that Q' = Q" and R is upper-triangular.

c+— QTb ; ¢1 «+— firstprowsof ¢

xz+— R '¢; ; (BTB)_1 +— R'R7T

Output: (a:, (BTB)_l)

which has solution z = A™'B”b where A = B” B where B and b have the following

structure:

&
Il

B, B/lo|---|0o
B,|O0|By|---| O
B, O0|0| - |B,,

and

b=

b1

by

by,

(S.1)

The sub-vectors of  and the sub-matrices of A corresponding to its non-zero blocks of are

labeled as follows:

T

2,1

T22

L2,m

and A ' =

All A12,1 A12,2 A12,m
A12’1T A22,1 X X
A12’2T X A22,2 X
A12,mT X X A22,m

(S.2)

with X denoting sub-blocks that are not of interest. The SOLVETWOLEVELSPARSELEASTSQUARES
algorithm is given in Algorithm S.3.

S.6 Derivation of Result 1

The full conditional density function of (3, u) satisfies

Note that p(y|3, u, v/, 0?) can be expressed as the

2] )

v (&

density function in the vector 7 , where

A

1<i<m

C = stack()A(Z-) blockdiag(éi)

1<i<m ]

and 7/ = stack {’!‘Jl — stack (Zjuj) ;.

1<i<m

p(B, u|rest) o< p(y|B, u, v, az)p(ﬁ,um).

1<¢/ <m/



Algorithm S.3 SOLVETWOLEVELSPARSELEASTSQUARES for solving the two-level sparse matrix least
squares problem: minimise ||b — B z||? in & and sub-blocks of A~ corresponding to the non-zero
sub-blocks of A = BT B. The sub-block notation is given by (S.1) and (S.2).

Inputs: { (b;(7; x 1), B;(f; x p), Bi(i x q)) : 1 <i<m}
w3 +— NULL ; ﬂ4 +— NULL
Fori=1,...,m:

Decompose BZ =Q; [ 131' } such that Q; ' = Q] and R, is upper-triangular.

coi < Q'b; ; Co «— Q] B,

. .. w
ci; «— first grows of cp; ; co; +— remaining rows of cp; ; w3z — { c 3 }
2i

e

C; «— first grows of Cy; ; Cg; — remaining rows of C; ; €y «— [ C
2i

Decompose €24 = Q [ 10%

] such that Q' = Q" and R is upper-triangular.

¢ +— first p rows of Qng s 2 +— R ¢ ; A« RT'R7T
Fori=1,...,m:
Lo R;l(cl,; —Crxy) ; A% fAH(R;lCh;)T
A% RTVR;T - €AY

Output: (w1, A, { (w2, 420, A1) - 1 < i < m})

Also,

p(B,u[Z) isthe N([%ﬁ}’[%ﬁ Imoéi)ZD

density function in the vector (3, u). Then, under product restriction II, standard quadratic
form manipulations lead to the optimal g-density function of (3,u) being that of the
N(Bq(8,u)> Xq(8,u)) distribution with updates

MFVB MFVB = MFVB MFVB

A A A A A A A A A
topa) +— (CTRLLCHD,) HCT R, 4 0u) and  Sqg.) «— (CTR,LC+D,) "
A
_ . —1
Here R, = uq(l/a2)I,

A
D MFVE —

-1 -1
EB O ] I 6MFVB = |: Eﬁ Hﬁ :|
O Im ® Mq(zfl) O

and
A A
T = Stack {yz — stack (Zgi’“q(uf/))}'

1<i<m 1<i/<m/

If b and B are defined according to (S.1) and the matrices b;, B; and BZ are defined as
in Result 1 then

A A A A A A
B'o=C"R '+ +o,, and BTB=CTR:!C + D,,,.

MFVB = MFVB MFVB

Therefore, with this assignment of b;, B; and éi, the Foq (8 ua) update corresponds to the
least squares solution z = (BT B)~'BTb and the updates of the sub-blocks of 34(8,ua)

listed in the first two rows of Table 1 correspond to the sub-blocks of (BTB)~! in the
positions where BT B has non-zero sub-blocks.
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S.7 Derivation of Result 2

Result 2 uses the following re-ordering of the overall design matrix:

~ ] A
C = | X stack(Z;) blockdiag(Z;)
rather than C' = [X Z] in the generalized ridge regression expressions of Section 3. This
re-ordering involves the g-density parameters of u’' preceding those of w and is brought
about by our m > m/ convention throughout this article and the requirement that the
potentially very large
A
blockdiag(Z;)
1<i<m
appears on the right for embedding within the two-level sparse least squares infrastructure
of Nolan & Wand (2020) and Nolan et al. (2019). The re-ordering means that the updates
for pyg . w) and g0/ ) are

MFVB

Hapara) < (€ BylC+ Do) /(€' RyLy + 0,) and
Zq(:@’u/,u) — (éTR_l é + EMFVB)_l

MFVB

where
x5! (o) 0]
bmvs = O 1I,® Mq((E/)—l) o
O 0 Im ® Mq(z—l)

has the M ((s)-1) matrices appearing before the M 5,-1) matrices due to the switch in
the ordering of the random effects vectors.

If b and B are defined according to (5.1) with the matrices b;, B; and BZ defined as in
Result 2 then straightforward matrix algebra can be used to show that

~T ~T ~ ~
B'»=C R_ly+ 0w, and BTB=C R_.C + D,,,.

MFVB

Therefore, with this assignment of b;, B; and éi, the Hq(B,u! u) update corresponds to the
least squares solution = = (BTB)'B”b and the updates of the sub-blocks of 35 4/ )
listed in the first four rows of Table 1 correspond to the sub-blocks of (BT B)~! in the
positions where BT B has non-zero sub-blocks.

S.8 Marginal Log-Likelihood Lower Bound and Derivation

The logarithmic form of the variational lower bound on the marginal log-likelihood, cor-
responding to model (1) with prior specification (B) and product restriction III is

1Og£(y7 q) = ECl {logp (y7ﬁ7u7 ’U;,, a52, AZ): AE’a 027 27 2,)
_logq* (Bvua ulvao27A27AZ’7U27272/)}

=E, {p (y[,@,u, u, 02)} + Eq{logp (B,u, |2, X")}
—Eq {logq* (B,u,u')} + Eq {logp (0?|ay2) } — Eq {logq* (¢%) }
+Eq {logp (as2)} — Eq{logq” (ay2)} + Eq {logp (X]Ax)}
—Eq{logq* ()} + Eq {logp (Ax)} — Eq {logq" (Ax)}
+Eq {logp (X'|Asy)} — Eq {logq* (X)} + Eq {logp (Asy)}
—Eq{logq" (As)}.



The first of the log p(y; q) terms is

E, {p (y|,8, u,u, 02)} = —%n., log(27) — %n..Eq {log(JQ)}

—3Ha1/o2) ) ) {‘

i=14'=1

Hr (X X Bq(g)) + tr (25 Zin Sq(u,))
T
+tr ((Z;z’) Z{“/ Eq(u;,))

’ 2

Yiv — XivHq@) = Zii H(u;) ~ Z;i"“’q(u;,)

2t [ 20, X 50 By (8 — tq0)) (1 — Hogu)) "}

+2tr _(Z/ii’)T X Eqg{(B — pq(a)) (uy — Mq(u;,))T}]

+2r | 25 Ziy Ea{ (wi — pro(u,) (w)y — bq (u;/))T}} } ‘
Under product restrictions I and II, Eq {p (y|8,u, v, 0%) } simplify further as we have
Eo{(B = pq(p)) (wir — Hq(u;,))T} =0, 1<i'<m,

and
Eq{(wi = Bg(uy) (W — o)} =0, 1<i<m,1<i <m,

Under product restriction I we also have

E{(B — pqe)) (ui — /‘l‘q(ui))T} =0, 1<i<m.

The second of the log p(y; q) terms is

Eqflog{p(8, u, u' | =, 5)}] = Egllog{p(8)} + log{p(ulZ)} + log{p(w/|")}]
= —4(p+mg +m'q) log(2m) — } log [ S| — 5 Eq {log |1}

!
—%Eq {log|>'|}

T
—gtr <261 { (“q(ﬁ) - “ﬁ) (qu) - “ﬁ) + Xqp) })
_%tr (MCI(EI) {Z (MCI(uz’)l'l':{(W) + 2‘!(“0) })

i=1
Lt (M Z(“ pl S ) .
2 a((=)7") i a(ul,)Fa(ul,) a(ul,)

The third of the log p(y; q) terms is the negative of

Eqllog{q(B,u,u)}] = —5(p+mq+m'q) — 5(p+mq+m'q)log(2r) — 5108 |Zq(8uu-

The fourth of the log p(y; q) terms is

ay2)}o2/2
B log{p(0%la:)}] = Eq (1og [{1/?(;2)/}2) <a2>-<%2/2>-1exp{—1/<2aaw?>}]>
= —1v,2 Eq{log(2a,2)} — log{T'(3v42)} — (3702 + 1) Eqf{log(c?)}
—3Ha(1/a,2)Ha(1/0%).



The fifth of the log p(y; q) terms is the negative of

)\ 5 §q o2 /2
Eqllog{a(o™)}] = Eq <log [{ q&éq/(i})/;)) <02>“w%/”1exp{—Aq<az>/<2a2>}D

= 2§q o2) log( (c2) /2) log{r(%gq((ﬂ))} - (%fq(az) + 1)Eq{10g(02)}
—%Aqw?)ﬂqu/ﬂ)'

The sixth of the log p(y; q) terms is

Vo)) 2
Byllog{p(a,2)}] = Ey (bg[“/ 2 (1/2))} a7 exp{—1/<2ugzs§2aaz>}]>

= —3 log(2v,252) —log{I'(3)} — (5 + 1) Eq{log(an2)} — {1/(2052532) }tg(1/a,2)-
The seventh of the log p(y; q) terms is the negative of

é(u. )/2
Aa(a_o)/2} 72 a 3
Eqllog{q(a,2)}] = E, (log {{ o)/ 2} (ag2) Catag2)/?) 1exp{Aq<a02>/(2%2>}D

F(‘Sq(aaz)/Q)

= 5&4(a,2) 108(Nq(a,2)/2) — 108{T (584(0,2))} — (5&a(a,z) + D Eqflog(a,2)}
~5N4(a,2)Ha(1/az)-
The eighth of the log p(y; q) terms is
| Ag | 2Wta- D) 33 (ve+20)
D(5(vs +2¢ - j))
= —3(vs +q—1)E{log|As|} — 3(vs + 2¢) Eq{log |=[}

q q
—ltr(Mq(A—l)Mq(Efl)) — 5(1/2 +2g — 1) log(2) — Z(q —1)log(m)

Eqllog{p(X|As)}] = E, ( eXp{itr(Azlzl)})

9% (ve+2¢-1) - $(q—1) Hq

721ogF ((vs +2¢ - 7).

The ninth of the log p (y; q) terms is the negative of

log{a(D)] |A =) |%(£q (=)~ Q+1)|2| %(ﬁq(z)-i-?) { )}
Eqllog{q(2)}] = E q — exp s

q "\ 28 TR @D T() (G +2 - ) Rl

= 5(&m) — g+ Dlog|[Aqmy| — 5(&q(m) + 2) Eq{log B} — jtr(Aqmy M ys-1y)

—g(fq@) +1)log(2) — %(q— 1) log(m Zlogr Lz +2 - 9))

The tenth of the log p(y; q) terms is

1
[Aag|2C 0] A5 |22
20m @I T(3(3 - )

Eqllog{p(Ax)}] = Eq ( eXp{étr(AAzAzl)})

q
3
= —3q(2—q)log(ve) — 3(2—q) > _log(s3;) — g Fallog|As|}
J=1

1 sds) (Myag )~ aloa() = (g — 1) log(r)

|
N[ =
(7=

1

logT'(5(3 — 7).

'M@ :

7j=1



The eleventh of the log p(y; q) terms is the negative of

1 1

Eqllog{a(As)} = Eq | — )
2g(£q(A2)+1)7”(q ) J 1 (%(fq(Az) +2-7))

= 3(&as) — ¢+ Dlog|Agag)| — 3(&ag) + 2)Eq{log|As|}

q q
_%tr<Aq(A>:)Mq(A§1)) - i(fq(Az) + 1) 10g(2) - Z(q - 1) log(ﬂ')

exp{%tr(Aq(hE)Azl)})

The remaining four terms of log p(y; q) are

Eqllog{p(X'|Ag)}] = —5(vs +d' — 1) Eg{log |[Asy|} — 5(vsr + 2¢') Eq{log | ']}

q q
—ltr(Mq((Az/)*1)Mq((2)*1)) - 5(1/2' +2¢" —1)log(2) - Z(ql — 1) log()
—Zlogf‘ svs +24 — 7)),

the negative of

R R e )

/ /

— % (€ + log(2) = (g — 1) log() Zlogré =) +2-J));

3
Eyllog{p(As)}] = —1d'(2 — ¢) log(vsy) — 32— ) Zlog ) — 5 Eaflog |45}
q J
5 D1 msh) (Myag) )~ 108(2) = (o' —1)log(x)
7j=1
q/
Zlogf‘ 3(3—4)),
7=1

and the negative of

Eqllog{a(Asy)}] =5 (&gay) — ¢ + 1) log|Aqgeay, | 3(&q(ag) +2)Eq{log |Asy[}
!

1 q /
—2tr(Agag) M a,)1y) — (€q +1)log(2) = <-(¢" — 1)log(7)

—Zlogr 1Eqag) +2— 1))

In the summation of each of these log p(x; ¢) terms, note that the coefficient of Eq{log(c?)}
is

— 3 Nee — 3052 — L+ 38402 + 1= =5 Nee — 30,2 — 1+ 3(Vp2 +n0a) + 1 = 0.
The coefficient of Eq{log(a,2)} is

— v — (34 1)+ 2ngJrl— Wee—(3+ 1)+ (v +1)+1=0.



The coefficient of E,{log |X|} is

m
5 ~3lvm +20) +5(Em) +2) = —3(m+vn +29) + 5(m +vs +2g) = 0.

The coefficient of Eq{log |Ax|} is

3
f%(vz+Q*1)*§+%(fq(A2)+2):*%(Vg+q+2)+%(l/2+q+2):0.

The coefficient of E4{log|X'|} is

/

|3

— (s +2¢) + 5 (Eqmy +2) = =5 (M’ + v +2¢) + §(m' + v +2¢) = 0.
The coefficient of Eq{log |Asy|} is

3
3 +d = 1) = 5+ 5(6@ag) +2) = —3(ve +d +2) + 5 (v + ¢ +2) = 0.

Therefore, the terms in Eq{log(c?)}, Eq{log(a)}, Eq{log |X|} and E,{log |Ax|} can be dropped
and we then have

log p(y; q) ZT

where

Ty = —3n.. log(2)

— 3 1/02)2 Z {‘

i=1¢=1
+tr (X“/X“/E (B)) + tr (Z“/Ziilzq(ui)) + tr ((Z/ ) zz’zq(u;,)>

+2tr _Z}}XWEq { ('6 N “q(ﬂ)> (ul - “q(w))TH

+2tr _(Z;i,) X, Eq {(ﬂ Hq(3 )(uﬁ _Hq(u:")>T}:|

o282 { (o ) (o)}

T, = %(p+mq+mq)log( ™) — 3 log | Zg|

T
—%tr (251 { (,uq(g) - ,Ug) (Nq(ﬂ) - :“ﬂ) + 2q(ﬂ)}>
—gtr (Mq<z—1> {Z (“a(u»“qT(ui) + EW“)) })

=1

—str (Mq(@')l) {Z (Bt )+ B ))}>

=1

‘ 2

Yir — Xiibg(s) = Ziit Mo(uy) — Ziir Ba(u!,)

)

Ts=1(p+mg+m'q)+ 3(p+mg+m'q)log(2r) + 1 log |Zy5.uw)
Ty = vg210g(2) —108{T (5¥52)} — Siq(1/a,0)Ma(1/02)s
Ts= ggq o?) log( (o2) /2) + lOg{F( gq o?) )} + 2)‘q (62)Hq(1/02)>

T = —4 log(2v,252:) — 1og{T(3)} — {1/(202572) Yttq(1/a_2)

10



Tr = —584(a,2) 108(A\q(a,2)/2) +108{T(3¢4(a_2))} + 3Aa(a,2)Ha(1/a,0)>

Ty =

—Zlogr vz + 20— j)),

To=—5(&ys) — ¢+ 1)log|A,

[

+4(q—1 log(m —|—Zlog

1
T3 &y +2

q q
7%tr(Mq(A—1)Mq(2—l)) - 5(1/2 +2q —1)log(2) — Z(q — 1) log(m)

]+ B (g My ) + 3 (€ + 1) log(2),

- 7)),

Tio =302 — ) loa(vs) — 3(2 ) D loa(sd) = 3 1/ (rmsd;) (Myazy)

q
—qlog(2) — 1(q — 1) log(7

j—l

J=1

Zlogf% - 7)),

Th = —%(fq(Az) —q+1)log|Aqay)| + 2tr(Ag(a (A )Mq(A_l))

5 (Eas) + D 10g(2) + (g — 1) log(x

E/)

/

+Zlogr L(Eqiag) +2 =),

!

q q
Ty = —ltr(Mq(Aﬂ M5y = Srs+2¢ = Dlog(2) — L(¢' = 1) log(m)

—Zlogl" (v +2¢ — ),

Ti3=—5(6yzn) — ¢ + 1) log ‘A

/

q

Tia=—34'(2~q)log(vsy) — 3

/

(L(
+4(q—1log +Zlog1“§

’ |+ ltI'(IX

(E/)Mq((z')— )+ (fq N+ 1)log(2),

s +2 = 7)),

2—q)D log(sy;) — 5> 1/ (s ) (Mq((Az/>‘1>>j~

q
—q'log(2) — 7-(¢' — 1)log(7) — ) log

and Ti5= —%(5q(AZ,) —q +1)log|Aqa,)l + str

/

+ 5 (Eaag,) + D) og(2) +

/

i(q — 1) log(m

11

(Aq(Azr)M ((AZ,)‘l))

)+ Zlogf 1(Eqay) +2—4)-



Note that the component of log p(y; q) which does not get updated during the coordinate
ascent iterations, except for the irreducible log I' terms, and which we will call ‘const” is:

const= —1in,,log(27) — 3(p + mq + m'q’) log(27) — 3 log |Eg| + 3(p + mq + m/q)

+3(p +mg +m'q') log(2m) — 31,2 108(2) + 3(§g(2)) 10g(2) — 3 log(20525%:)

~3q(vs +2q — 1) log(2) — Z(q — 1) log(m) + $q(Sq(s) + 1) 1og(2) + 3 (q — 1) log(m)

32(2—q)log(ve) — 5(2—¢ Zlog ) — qlog(2) + 3q(&qas) + 1) log(2)

7=1
/

q
—1q'(vsy +2¢' — 1) log(2) — 5(61’ — 1) log(m) + 2q "(&zy + 1) log(2)
+5 (¢~ Dlog(r) — 3¢'(2 — ¢ log(vs) — (2~ ¢ Zlog ~q/log(2)
+5¢ (§qay) + 1) 1og(2) — logT'(3)
= =1 (N + 1) log(m) — Llog |Sg| + 2(p+ mg + m'q’) — log(v,2) — 5 log(s22)
+i{glvs +q+m—-1)+¢ (vs +¢ +m' —1) — 1} log(2)

q
—2q(2—q)log(vs) — 3(2—q) Y _log(s22) — 3¢'(2— ) log(vsy) — 22— ¢/ Zlog (s72)
=1

Our final log p(y; q) expression is then

N + 1) log(m) — 3 log |Zg| + L (p + mg + m'q’) — 1 log(v,2) — 4 log(s22)

logp(y;q)=—1( lo
+i{alvs +q+m—1)+ ¢ (vs +¢ +m' —1) — 1}1log(2) — 3¢(2 — q) log(vx)

q
~12 -9 Zlog sz2) — 2q'(2—¢)log(vs) — 3(2—¢) Zlog —log{I'(3v,2)}
j=1
—ir (x5! - - +2 + Llog|® N
2 B\ \Hape) ~Hpg) \Hap) ,6 a(8) 2 108 [ 24g(B,uu)

—tr (Mq@l) {Z (“q(uz)“q( SRR Wﬂ) }) = 3Ha(1 /0, Ha(1/0%)

=1

—gtr (Mq((z/)—l) {Z (Featu i) + 2q<ug,))}> = {1/(252552)  tq(1/a,2)

1
2£q o2) log( (02) /2) + log{r( gq o?) )} + )\ q(o2)Hq(1/02)

N \

—gtr(M 4o M Zlogr (3(vs +2q — 7)) — str(AgsyMyz-1y)

_%tr(Mq(A)}l) Zlogf‘ 5 +2¢' — j)) — %tr(Aq(E')Mq((E’)fl))

ggq (a,2) log( (a 2)/2) —|—log{F( 5f{(a 2) )} + 2>‘q(a 2)”‘1(1/‘1 2)

—Zlogf%fq(zﬂr?—j)) 3(&m) — g+ 1) log |Ay x|
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—Zlogr% sy +2—5)) + 3 (&) — ¢+ 1) log |Ay s

2
Y — 'L'L’/J'q(ﬁ) - Zii/ﬂ'q(ui) - Z;i’u’q(u;,) ’

—3Ha(1/0%) ZZ {‘

i=1 /=1
i (XG5 X Sq(p) + 10 (25 Ziv Sqqup) + t0((Z5)" 2B,

+2t1‘ |:Z3;/X“/Eq{(ﬁ — uq(ﬁ))(ul - P’q(ui))T}]
T
2tr | (Z4)" X Bal(B — o) (W = tigqur, )"}

The log p(y; q) expression simplifies under product restrictions I and II, since we have

E{(B “q,@))( it — Hg(u ) } O, 1Si,§m,7

and
Eo{(wi — Pgpu) Wy — tgr))"} =0, 1<i<m,1<d <m'.

Under product restriction I we also have
Eo{(B — ttq() (Wi — By(uy) 1 =0, 1<i<m.

From Theorem 1 of Nolan & Wand (2020), the log |38 4,u/)| term has the following stream-
lined form:

log |34(8,u,u)| = log ]AH component of S from Algorithm 2]

—Z log

A

Hg( 1/02 Z ( s

under product restriction I, and

m m A A
og |Zq(guu)| =108 [Zq(a)| + Y108 [Zqn | — D 1og |t/ 2] Zi + M 51,

i=1 =1

under product restrictions II and III.

S.9 Streamlined Computing for Frequentist Inference

As an aside we point out that the approach used by Algorithm 8 for product restriction III,
in which the g-density updates for the (3, u,;) parameters are embedded within the Sot-
VETWOLEVELSPARSELEASTSQUARES infrastructure, can also be used for streamlined frequentist
inference when m' is moderate in size. To the best of our knowledge, the results given here
for efficient computation of the important sub-blocks of the relevant covariance matrix are
novel.

The frequentist Gaussian response two-level linear mixed model with crossed random
effects is -,

Yir|Bywiuwly ~ N(X B+ Ziy wi + Zyy uly, 02 1), 53

w; < N(0,%), u), © N0O,T), 1<i<m, 1<i<m.
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The best linear unbiased predictor of |37 u”]T and its corresponding covariance matrix
are R
|:g:| = (CTR;UIPC + DBLUP)_ICTR;ulpy

(S.4)

~

and Cov <|:,\B :|) :(CTR_IC"i_DBLUP)il

u—u BLUP
where C = [X Z], with X and Z as defined in Section 2.1.

(0 (0

DBLUI’ = O Im X 2_1 0] and RBLUP = O'2I.
[ o) I, (X))t ]

Note that the following sub-blocks are required for adding pointwise confidence intervals
to mean estimates:

~

Cov(B), Cov(u; —u;), Cov(uy —ul),
3 - (S.5)
E{B@i —w)"}, E{B@} - u))"} and E{(@ —wi) (@, - uj)"}

forl1<i<mandl<i <m.

Result S.1. Computation of [BT a’ )" and each of the sub-blocks of Cov(|B @ — u]T) listed in
(5.5) are expressible as the two-level sparse matrix least squares form:

i

where b and the non-zero sub-blocks of B, according to the notation in (S.1), are, for 1 < i < m,

2

_1A' _1‘, —1./ *1A.
g yz g Xl g Z’L g Zz

b, = 0 , B;= [0) m*1/2<Im, R (E/)*1/2) and B; = [0)
0 o) (o) »-1/2

Each of these matrices has n;, + m’q’ + q rows. The B; matrices each have p + m'q’ columns and

the B; each have q columns. The solutions are

B = first p rows of z1, Cov(B) = top left p x p sub-block of A%,

stack (w),) = subsequent (m'q') x 1 entries of , following B3,
1<i/'<m/

E{B@, — ul,)T} = subsequent p x q' sub-blocks of A'* to the right of Cov(B),
Cov(uy — ul,) = subsequent ¢ x ¢ diagonal sub-blocks of A™ following Cov(8), 1< <m/,
u; = x2;, Cov(u; —u;) = A% E{B(ﬁl —w;)T} = first p rows of A"

12?351' [E{(t; — u;)(@y — ul,)T}] = remaining m'q’ rows of A'>*, 1 <i<m,

where the x1, 2, A A% and A% notation is given by (S.2).

Algorithm S.4 proceduralizes Result S.1 to facilitate computation of best linear unbi-
ased predictors for the fixed and random effects parameters in (S.3) for fixed values of the
covariance parameters. In practice, the covariance parameters would need to be replaced
by estimates obtained using an approach such as restricted maximum likelihood. Algo-
rithm S.4 also delivers the matrices in (S.5). In the case where m’ is moderate but m is
potentially very large Algorithm S.4 performs efficient streamlined computing.

14



Algorithm S.4 Streamlined algorithm for obtaining best linear unbiased predictions and corre-
sponding covariance matrix components for the linear mixed model with crossed random effects.

A A A l/ .
Data Inputs: { Y, X, 2, Z,; |- 1<i< m}

Covariance Matrix Inputs: 02 > 0, X'(¢’' x ¢'), E(q x ¢), symmetric and positive definite.

Fori=1,...,m
O-_léz U_l)A(i 0‘_1%/»
b, +— 0 , B +— O m=YV2 (I, ®(X)"1?) |
0 (0 0]
A
O'ilzi
B’L < O
$—1/2

S +— SOLVETWOLEVELSPARSELEASTSQUARES({(bi, Bi,E}i) 1 <i < m})

,@’ «— first p-rows of &; component of S
COV(B) < top left p x p sub-block of A'* component of S
tat <— p+ 1
Fori =1,...,m'":
fond ¢ st + ¢ — 1
u; <— sub-vector of z; component of S with entries i tO feng
Cov(u, —u),) +— diagonal sub-block of A'' component of S with rows
s 1O Teng and columns gy 10 Zeng
E{B@), — u},)T} <— sub-block of A component of S with rows 1 to p and
columns 7y tO Zeng
Tstt ¢— Tend + 1
Fori=1,...,m
U; +— @2, componentof S ; Cov(u; — u;) «— A?%0 component of S
E{B(t; — u;)T} +— sub-matrix of A% component of S with rows 1 to p
I <— p+1
Fors =1,...,m":
fend <— G + ¢ —1 ; Q<+— A" component of
E{(u; — ul)(ﬂi, - ug/)T} +— sub-matrix of Q7 with columns iy t0 ieng
Tstt < Tend + 1

Outputs: 3, Cov (), {(a;,, E{B(@}, —u,)T}, Cov(@l, —ul)): 1<i' <m/,

B
( mE{/B - uz)T}aE{(az - 'Uzz)(’l/l\,;/ — u;/)T},COV(ai — ul)) 01 § 1’ < m’,
1<
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S.10 Full List of Items in the National Education Longitudinal
Study

Table S.2 lists each of the 24 items within the National Education Longitudinal Study data
set used in Section 6. Several of the measurements involve item response theory, which is
abbreviated as IRT.

item description

reading IRT-estimated number right

mathematics IRT-estimated number right

science IRT-estimated number right

history/citizenship /geography IRT-estimated number right

reading standardized score

mathematics standardized score

science standardized score

history/citizenship /geography standardized score
9 reading IRT estimate of ability

10 mathematics IRT estimate of ability

11 science IRT estimate of ability

12 history/citizenship/geography IRT estimate of ability

13 standardized test composite (reading, mathematics)

14 reading level 1: probability of proficiency

15 reading level 2: probability of proficiency

16 reading level 3: probability of proficiency

17 mathematics level 1: probability of proficiency

18 mathematics level 2: probability of proficiency

19 mathematics level 3: probability of proficiency

20 mathematics level 4: probability of proficiency

21 science level 1: probability of proficiency

22 science level 2: probability of proficiency

23  science level 3: probability of proficiency

24  science level 4: probability of proficiency

IO Ul WIN -

Table S.2: Descriptions of each of the 24 items in the National Education Longitudinal Study data
used in Section 6. The abbreviation IRT stands for item response theory. Fuller details are provided
by Thurgood et al. (2003).
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