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SUMMARY

We present a simple semiparametric model for fitting subject-specific curves for longitudinal data.
Individual curves are modelled as penalized splines with random coefficients. This model has a mixed
model representation, and it is easily implemented in standard statistical software. We conduct an
analysis of the long-term effect of radiation therapy on the height of children suffering from acute
lymphoblastic leukaemia using penalized splines in the framework of semiparametric mixed effects
models. The analysis revealed significant differences between therapies and showed that the growth rate
of girls in the study cannot be fully explained by the group-average curve and that individual curves
are necessary to reflect the individual response to treatment. We also show how to implement these
models in S-PLUS and R in the appendix. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: linear mixed models; restricted likelihood ratio tests; penalized splines; acute lympho-
blastic leukaemia

1. INTRODUCTION

Longitudinal data arise frequently in many medical and biological applications. They generally
involve a collection of data at different time points for several subjects, and they are character-
ized by the dependence of repeated observations over time within the same subject. The basic
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1154 M. DURBAN ET AL.

random-effects models for longitudinal data represent each individual as the sum of a popula-
tion mean which depends on time and is modelled as fixed effect, and a low degree polynomial
with random coefficients to model the individual variation. This approach yields a mixed ef-
fects model which provides a flexible framework to analyse these type of data [1]. In many
situations this parametric assumption is not appropriate.

In many situations, the objective of a longitudinal study is to describe how the response
variable is affected by time and other covariates, and the features of the individual profiles.
The time course is often too complicated to model parametrically, this is the reason why in
recent years there has been increasing interest in non-parametric analysis of longitudinal data
and more specifically in non-parametric subject-specific curves. Early work in this context
[2, 3] proposed a semiparametric mixed model for longitudinal data and used different types
of smoothers (kernels, smoothing splines, etc.) to estimate the mean population curve, but
random effects were modelled by parametric functions. Zhang et al. [4] extended this work
by considering a more general class of semiparametric stochastic models by accounting for
the within-subject correlation using a stationary or non-stationary Gaussian process, though
they did not consider smooth curves for individual subjects. Brumback and Rice [5] modelled
both population mean and subject-specific curves non-parametrically with smoothing splines
and used their mixed model representation to present a unified approach for these types of
models. However, they ran into computational problems because they assumed fixed slopes
and intercepts for the subject-specific curves. Rice and Wu [6] partially solved this problem
by modelling individual curves as spline functions with random coefficients. However, in their
low-rank spline basis approach the number and location of the knots used to construct the basis
became an important issue. Consequently, the fit of their models involved the use of some
selection criteria to choose these parameters. More recently Guo [7] took a functional data
analysis approach by introducing functional random effects which are modelled as realizations
of a zero-mean stochastic process. He also used the connection between smoothing splines
and mixed models for fitting and estimation of his model. However, Guo [7] also faced
computational problems due to large matrices (since smoothing splines use as many knots
as data points), and consequently developed a sequential estimation procedure using Kalman
filtering [8].

Our approach is a trade-off between spline regression (too dependent on number and
position of knots) and smoothing splines (too computationally intensive with large data sets).
We use low-rank smoothers (as in Reference [6]) with a penalty approach [9]. We also use
the equivalence between a penalized smoother and the optimal predictor in a mixed model
[10—12] to present a unified approach for model estimation. The penalty approach relaxes
the importance of the number and location of the knots and the use of a low-rank smoother
solves the computational problems of other approaches when analysing large data sets. The
mixed model approach allows one to use existing statistical software and simplify the fit of
otherwise complicated models.

The paper is organized as follows: Section 2 presents a general semiparametric mixed model
for longitudinal data based on penalized splines and their correspondence with the optimal
predictor in the mixed models. Details on estimation and inference about the parameters are
given in Section 3. The models proposed are illustrated in Section 4 with the analysis of data
from children suffering from acute lymphoblastic leukaemia (ALL). The paper concludes with
a brief discussion in Section 5 and an appendix where we show in detail how to implement
these models in S-PLUS and R.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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2. SEMIPARAMETRIC MIXED MODELS FOR LONGITUDINAL DATA

Mixed models are the most widely used method for the analysis of longitudinal data. However,
the parametric assumption in the linear mixed model may not always be appropriate, and in
many longitudinal studies the response should be modelled as a non-linear function of time
for each individual.

We propose the penalized spline model to model the deviation of each subject curve from
the population average. The correspondence between the penalized spline smoother and the
optimal predictor in a mixed model allows us to take advantage of the methodology and
software existent for mixed model analysis, and makes possible a simple implementation of
otherwise complicated models. We will illustrate the models proposed with the analysis of
the data collected on children suffering from ALL. Obesity and short stature are common
late effects for childhood ALL and treatments are aimed to minimize the side effects without
compromising efficacy. In one of the clinical trials carried out at Dana Farber Cancer Institute
(Boston, U.S.A.) (see Reference [13] for a detailed description) a total of 618 children were
treated between November 1987 and December 1995 with three different central nervous
system therapies: intrathecal therapy alone (no radiation), intrathecal therapy with conventional
cranial radiation, and intrathecal therapy with twice daily radiation. Measurements on height
and weight were taken at diagnosis and approximately every 6 months thereafter. Previous
studies on the effects of cranial radiation on height suggested that radiation contributed to
decreased expected height, since cranial radiation has been associated with the development
of growth hormone deficiency.

The purpose of this analysis is to evaluate the long-term effects of treatment on the children
height and on the individual growth trajectories.

2.1. Random intercept and slope models
Let y; denote the height of girl i, i=1,...,m at age x;;, j=1,...,n;. A starting model for
these data could be the linear mixed model proposed by Laird and Ware [1]:

Yij = Po+ Prxi; + Ui + ¢ (1)

where U; ~N(0,0?,) and &;; ~N(O0, 62), Bo represents the overall mean and U; is a random
intercept for girl i, which is treated as a random sample from the population of girls and
requires just a single parameter, g7, We can write model (1) in matrix notation as

Y=Xp+Zu+¢ (2)
where
Vit X 1t
Y = , X = , Xl =
Yo, X 1t

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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Figure 1. Height of girls over time for each treatment received.
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Figure 1 plots the height of girls as a function of age for three different treatments. We can
see that the linearity assumption is not reasonable for ALL data, and in general, for height
of children in this range of age, and so (1) should be at least extended to

vij=f(xij) + Ui +¢; 3)

where f is a smooth function which reflects the overall increasing trend of height along age.
We estimate f by a penalized spline. Let x;,...,kx be a set of distinct knots in the range
of x;; and x; = max(0,x). The number of knots K is fixed and large enough (in this case
K =40) to ensure the flexibility of the curve. The knots are chosen as quantiles of x with
probabilities 1/(K +1),...,K/(K+1). We use truncated lines as the basis for regression since
their simple mathematical form is very useful when formulating complicated models. More
complex basis such as B-splines and radial basis functions (with better numerical properties)
could also be used to fit these models and the programs presented in the appendix are easily

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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adapted to use any basis for regression. A penalized linear spline model for (3) is

K
yiy= Po+ Pixi + 3 ue(xij — k6) +U; + &5 Ui ~N(0,67) &;~N(0,07) 4)
=1

S (xij)

For given values of ¢, and o2, the estimates of (B,u) are obtained by minimizing the penalized
least squares:

m n;

> > vy — f(y) = Uiy + Ju'u+ (a7 /oy)UTU

i=1j=1
where the smoothing parameter 4 controls the amount of smoothing of f, i.e. a value of 1=0
is equivalent to ordinary least squares, while with larger values of 4, the term Au"u looks after
the overparametrization of the regression function by placing a penalty on the smoothness
of the uy, yielding smoother fitted curves. The penalized spline smoother corresponds to
the optimal predictor in a mixed model framework assuming u; ~N(0,02) and /= 02/c2.
Brumback et al. [10], Currie and Durban [11] and Wand [12], among others, discuss the mixed
model representation of penalized splines. This enables us to write (4) as a semiparametric
mixed model similar to (2) where now

Z, 1, 0 ... O
Z, 0 1, ... 0 (tn —x1)+ o0 (tn — Kg)s
Z= . Zi= : -
o (ti, —11) oo (tin, — KK )+
Z, o1,
T a1 0
u=/[u,...,ux,Uy,...,U,]" and G=Cov(u)= 5
0 oyl

In this model, the deviation of the ith girl is modelled through a random intercept. This is
quite simplistic and will usually not be realistic since it assumes that the growth curves are
parallel. A simple extension is to assume that the subject-specific differences are straight lines:

vij=f(xiy) +ain +anx; +&;  &;~N(0, 0?) (ain,an )T ~N(0,%) (5)

which in matrix notation becomes
Y=Xp+Zu+z¢

Z, Xi; 0 ... 0
Z, 0 X, ... 0
Z= . . L s u=lun,.ug,an, i, Gty @]’
Z, 0 0 .. X,
a1 0
G=Cov(n)= | blockdiagonal X

I1<i<m

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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Another point worth mentioning is that we allow for complex departures from the common
linear component, since X is an unstructured 2 x 2 matrix. The alternative is to assume that
the subject-specific intercepts and slopes are independent, and hence that X is diagonal, and
assumption that we do not recommend. In the first instance, if one assumes that 3 is diagonal
in the original parameterization a;; + a,>x;;, then they will not be independent if the x’s become
centred at their mean, as might reasonably be done for numerical stability. Previous papers
[7, 14] propose the use of this covariance structure, but the authors do not use it in their
examples and do not show how to implement it in the usual statistical packages; in the
appendix we show how to implement it in S-PLUS and R.

2.2. Subject-specific curves

The most flexible models are those that allow for the subject-specific differences to be non-
parametric functions (see for example Reference [15]). This can be done using penalized
splines as follows:

vii = f(xi) + gilxij) + &5 & ~N(0,07)

K

gi(xi;) = an + apx;; + kZI vik(Xij — ki )xs  (an,ap)" ~N(0,%) vy ~N(0,0; ()
This model is an extension of (5) since in that model, the individual trajectories were lin-
ear, a;1 + apx;;, and in (6) each subject-specific curve has two components: a linear (similar
to (5)) and a non-linear part, Zlevik(xi,- — Ky )+, which allows more flexibility. Both com-
ponents are random, different from the approach taken by Brumback and Rice [5]. Though
model (6) is complex, it is easily described in the mixed model framework as

Y=Xp+ Zu+¢ with

Z, X5 0 ... 0 7, 0 ... O
Z 0 X ... 0 0 Z, ... O
Z:
Z, 0 0 ... X, 0 0 .. Z, %
u:[ul""7uKaa115a12"-'7amlyam25vlla-'-ava]T
| 0 0
G =Cov(u)= 0 blockjiia}%(:flal by
0 0 |

v

2.3. Factor by curve interactions

One of the purposes of the study carried out with children suffering from ALL was to compare
the long-term effects of the three different therapies, so we might be interested in fitting a
separate mean curve for children receiving each therapy. To do that we use an interaction
model in which a categorical factor interacts with a continuous predictor, so that model (6)
can be extended to

Vij = fa(xip) + gi(xi) + &

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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K L L K
Vij = Bo + Brixij + Dw(xij — ki )+ + D0 za(yor + yuxip) + D za {Z Wi (x;; — xk)+}
k=1 1= = U=

K
+an + apx; + Y vi(xy; — ki )y + &
k=1
up ~N(0,02), wi~N(0,0%), vx~N(0,02), &;~N(0,02) (8)

where z; =1 if z; =/ and 0 otherwise for / =2,3. For simplicity, we have assumed a common
variance parameter for all curves, i.e. Var(wj)=¢2, [=2,...,L. A common variance means
that all curves have equivalent smoothness, but the random effects are independent from
function to function, i.e. the curves are different but with the same amount of smoothing.
In order for the fixed effects to be identified we need to put constrains on y;;, we assume
Y01 =711 =0 (as in Reference [16]) which means that f, + fix;; + Zszl up(x;; — x5 )4 is the
fitted curve for /=1 and yo; + y1x;; + Zszl wi(x;; — K¢ )4 is the difference of the fitted curves
for the therapies 2 (standard radiation) and 3 (hyper-fractionated radiation) and therapy 1
(no radiation). The mixed model representation of this model is similar to (6) but now the
part of Z corresponding to the overall mean is block-diagonal and each block corresponds to
the truncated line basis for children receiving each therapy.

3. INFERENCE

The linear mixed model representation of penalized splines is the foundation for fitting the
models described in Section 2. A standard estimation criterion for variance components is the
restricted maximum likelihood (REML) of Patterson and Thompson [17]. For example, given
model (6)

(r(0s,07,07) =4 1og V| — Llog | XTV'X]

—IyI(VT = VIIXXTVIX) T IXTV  hyy 9)
where V=2ZGZ" 4 ¢2I and G is defined in (7). The vector of parameters p and the random

coeflicient vector u can be determined using best prediction:

ﬁ (XTV71X)71XTV71y

i=GZ'™V '(y—Xp)

Testing the adequacy of a parametric model against a non-parametric alternative is not straight-
forward. For example, in model (3) we might be interested in testing whether the function
describing the population mean is a line or there is some degree of nonlinearity. This is
equivalent to testing

Hy:0>=0vs Hy:62>0

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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The main problem we face here is that the parameter of interest is on the boundary of the
parameter space, [0,00), so the restricted likelihood ratio statistic

RLRT = sup REL(Bv O-ga O-%fa G%{) — sup REL(ﬁv O-ga 0-%17 O-g) (10)
H] HO

cannot be compared with a y}. Self and Liang [18] and Stram and Lee [19] discussed the
asymptotic distribution of RLRT and showed that under the assumption that y can be parti-
tioned into independent subvectors and the number of subvectors tends to infinity, (10) has
ai )(é +1 x; 41 asymptotic distribution, where ¢ is the number of fixed effects under the null
hypothesis. However, this assumption does not hold under the alternative hypothesis in this
type of semiparametric mixed models, and the chi-squared mixture approximation can be
poor [20]. Crainiceanu and Ruppert [21] derived the case of testing polynomial regression
against a general alternative modelled by penalized splines for one variance component and
Crainiceanu et al. [22] studied the case where there are several variance components. These
authors also suggest the use of simulation to determine the null distribution of the likelihood
ratio test statistic. The idea is to estimate the model parameters under the null hypothesis, then
simulate the distribution of the likelihood ratio test under the null model at the parameters.
Crainiceanu et al. [22] give fast simulation algorithms in some cases, however, the complexity
of these algorithms increases linearly with the number of subjects and the fitting of complex
models to a large number of simulated data sets can become computationally infeasible. The
complexity of the model proposed in this paper, and the large number of observations in the
data set makes it difficult to implement the methods proposed above. As a guide line, we will
compare the RLRT with the chi-squared mixture approximation.

4. APPLICATION TO THE ALL DATA

We used the semiparametric mixed models described in Section 2 to analyse the ALL data.
We concentrate on analysis of 197 girls diagnosed with ALL between 2 and 9 years of
age. Height was measured at different times and a total of 1988 observations were obtained.
The number of observations per girl ranged from 1 to 21. Two nested models with 5 and
6 variance components were fitted to the data, namely models (5) extended with factor by
curve interaction and model (8):

Vi = fo.(xij) + an + apxi; + &;
Vij = fo(xij) + gi(xi) + &

where y;; is the height in centimeters of the ith girl at age j (in years), for i=1,...,197
and j between 1 and 21, f; is the group-average curve for girls receiving intrathecal therapy
alone, f, for girls receiving intrathecal therapy with conventional cranial radiation and f; for
girls receiving intrathecal therapy with twice daily radiation, @;; and a;, are random intercepts
and slopes, respectively, and g;(x;;) is the subject-specific deviation of the ith girl from the
group-average curve. We used REML for variance component estimation and the function
lme () implemented in S-PLUS 2000 and R 1.8 to fit the model. Details can be found in the
appendix.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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Figure 2. Estimates of the population mean response curves (left) and contrast curves with
pointwise confidence bands (right).

In our analysis, we are interested in estimating mean treatment effects and the individual
responses to treatment. In model (8), we assume that curves describing the effect of treatment
have equivalent smoothness. We can test this assumption which is equivalent to the hypothesis:

Hy:op =0y, =0,3=0,

The appropriate way to proceed would be to use parametric bootstrap to obtain the distribution
of the likelihood ratio test, however, as we mentioned above, the computational time needed to
fit the null model to a large number of simulated data sets (between 10 000 and 100 000) would
make the bootstrap method infeasible. The distribution theory or Monte Carlo approaches
are still an open problem. As a guideline, we compare the —2log(RLRT)=0.7719 with
1.642 which is the 90th percentile of 1y3 + 1y? (the distribution of —21og(RLRT) under the
assumption of independent y’s). This result suggests that we do not need separate variance
components for each curve. Figure 2 (left) shows the estimates of the population curves for
all three groups in model (8). It can be seen that all groups have similar height patterns, but
the girls not receiving radiation (treatment 1) are taller than girls in the other two groups.
In particular, the group not receiving radiation seems to be significantly taller when they
reach adolescence. To compare the three average-curves we refit the model with one common
average curve, the null hypothesis corresponding to

Hy:yy=0 j=0,1 [=1,2,3 and ¢2=0

for y;; and o2 defined in (8). We compare the —2log(RLRT)=30.11 with the 90th percentile
of 33+ 373, 5.528. This result shows a high degree of statistical significance, implying that
the height of girls is affected by the treatment received. This result supports the findings
that associate cranial radiation with growth hormone deficiency [24,25]. Crainiceanu and
Ruppert [21] test for fixed and random effects simultaneously in models with one variance

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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Figure 3. Estimates of random effects for each girl.

component, further research needs to be done to extend this work to the present case where
there are several variance components. In the right panel of Figure 2, we present the contrast
curves, f;(x,:,-) - ﬁ(xii) and J‘;(xii) - ﬁ(xi/). The plot shows how the height of girls receiving
conventional cranial radiation (treatment 2) is lower, at all ages than the height of girls
not receiving radiation (treatment 1). The method presented in Ruppert et al. [15] could be
extended to compute simultaneous confidence bands for these curves in an efficient way. The
software package ASREML [27] also fits these models and handles confidence bands around
curves.

To test whether or not the individual response to treatment is linear we compare models (5)
and (6). Figure 3 shows the estimates of random effects corresponding to the subject-specific
curves in model (8). It shows that the between-girls variation is considerable and that a linear
random effect to describe the within-subject variation would not be appropriate. Comparing
models (5) and (6) (extended with factor by curve interaction) is equivalent to testing:

Hy:0>=0vs Hy:6? > 0

Again, it would be preferable to use Monte Carlo simulations, but given the complexity of the
model we compare the value of —21og(RLRT)=202.99 to the 90th percentile of a 13+ 113,
1.642. This result indicates that the deviation of the each girl from the population average
needs to be modelled non-parametrically. Figure 4 shows individual and treatment group
curves for six girls. The average group curves do not follow the response of individual girls
and are different from the individual curves, showing the loss of information about individual
trajectories when subject-specific curves are not included in the model. The apparent near
interpolation of the fitted curves is due to the difference in the scale of the height trend
compared with the error variance. One last remark is the fact that not accounting for the
individual variation correctly can have an impact on the comparison of the average-curves for
each therapy. In this example, there was no significant difference between the average-curves
for each group when the model fitted only included a random intercept and did not include
subject-specific trajectories.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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Figure 4. Plot of individual curves (solid lines) with 95 per cent confidence intervals together with
treatment average group curves (dashed lines) and observed heights for comparison.

5. CONCLUSIONS

We have provided a flexible and simple method of fitting individual curves in longitudinal
studies. The mixed model representation of penalized splines allows one to take advantage
of the existing methodology for mixed model analysis and the use of software such as PROC
MIXED in SAS and lme() in S-PLUS and R. Our use of low-rank smoothers with penalties
and random subject-specific curves solves the computational problems of previous approaches
[5,7] based on smoothing splines and reduces significantly the time needed to fit the models.
Our approach allows a fast fit of complex models to longitudinal problems with large number
of individuals, the fit of model (6) with 197 subjects and 1988 observations took less than a
minute on a 1.20 GHz Pentium III PC.

Our analysis of ALL data indicates that the growth of girls who did not receive radiation
was not slowed down by the therapy. In our data, girls not receiving radiation were on average
taller than girls receiving standard or twice daily radiation, and this difference increased when
girls reached puberty. The flexibility of these non-parametric models captured the relative
growth effects of the three different therapies on each girl, showing that the growth rate of
the girls in the study cannot be fully explained by the group-average curve and that a linear
function would not be appropriate to describe the long-term effect of therapy on height. The
models presented here can be easily extended to more general models, for example, to account
for correlation among errors.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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APPENDIX A: IMPLEMENTATION IN STATISTICAL SOFTWARE

Statistical packages such as S-PLUS, R and SAS have generic functions which fit linear mixed-
effects models and allow for nested random effects. The SAS procedure PROC MIXED and the
lme() function in S-PLUS and R allow the fitting of complex mixed models and so, obtain
easily estimates of fixed and random effects and variance components. Below we describe the
fitting of models (3), (6) and (8) to ALL data. This data set is confidential, so it cannot be
made available, however, a simulated data set and the programs to fit these data with SAS,
S-PLUS and R are available on request.

A.1. Random slope and intercept models

We start by giving some code to set up the basic inputs of the programs. The response
variable, factors and independent variables are part of a S-PLUS data set, ALL:

attach(ALL)

y <-ALL$height

time < -ALL$age
treatment < ~ALL$xrtrand
subject<-ALL$child

We follow Ruppert [26] to set the number and location of the knots used to compute the
basis of the penalized spline for the overall mean:

K<-max(5,min(floor(length(unique(time))/4),40))
knots < -quantile(unique(time),seq(0,1,length=K+2)) [-c(1,K+2)]

Set up design matrices and truncated lines basis:

X<-model.matrix(y  time)

Z < -outer (time,knots, “-7)
Z<-Z*(Z>0)

n<-length(y)

The fit of model (3), y;; = f(x;;) + U; + ¢; is given in two line commands:

Id<-factor(rep(l,length(y)))
fit<-lme(y~ time,random=1list (Id=pdIdent(~Z-1),subject=pdIdent(~1)))

Id =indicates that there is no grouping structure for the design matrix Z, i.e. there is a single
curve for all therapy groups; pdIdent specifies that the variance structure of the random
effects is a multiple of the identity, and subject=pdIdent(~1) indicates that each child has
a different random coefficient (a total of 197), but with a single variance component for all
of them. The estimated variance components and estimates of fixed and random effects are:

sig.sq.hat<-fit$sigma~2
sig.sq.U.hat<-sig.sq.hat*exp(2*unlist(fit$modelStruct) [1])
sig.sq.u.hat<-sig.sq.hat*exp(2*unlist(fit$modelStruct) [2])
beta.hat<-fit$coeff$fixed

u.hat<-unlist(fit$coeff$random)

f.hat<-X % * % beta.hat+Z % * % u.hat[1:ncol(Z)]

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153-1167
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d<-dim(fit$fitted)
fitted.val<-fit$fitted[,d]

Model (5), yi;j = f(x;;) + ai + anx;; + ¢&; fits a specific slope and intercept for each girl:
fit<-lme(y~ time,random=1ist (Id=pdIdent(~Z-1),subject=pdSymm(~ time)))

The command subject=pdSymm(~time) specifies a 2 x 2 symmetric positive-definite ma-
trix covariance structure for the random intercept and slope, a; + anx;; (ai,an)" ~N(0,%),
identical but separate for each subject.

A.1.1. R code

library(nlme)

Z.block<-1list(list (Id=pdIdent(~Z-1)),list(subject=pdIdent(~1)))

Z.block<-unlist(Z.block,recursive=FALSE)

data.fr<-groupedData( y~ X[,-1]|rep(1,length=length (y)),data =
data.frame(y,X,Z,subject))

fit<-lme(y~X[,-1] ,data=data.fr,random=Z.block)

For model Model (5),

Z.block<-list (list (Id=pdIdent(~Z-1)),list(subject=pdSymm(™~time)))
Z.block<-unlist (Z.block,recursive=FALSE)
fit<-lme(y~X[,-1] ,data=data.fr,random=Z.block)

A.2. Subject-specific curves

We now set up truncated lines basis for subject-specific curves. The number of observations
within subject is at most 21 and the number of individuals is 197, now we will use 10 knots
(instead of 40) to construct the basis for each subject.

K.subject<-10

knots.subject<-quantile(unique(time) ,seq(0,1,length=K.subject+2)
) [-c(1,K.subject+2)]

Z.subject<-outer(time,knots.subject, “-7)

Z.subject<-Z.subject*(Z.subject>0)

The fit of model (6), yi; = f(x;;) + gi(x;;) + &; is:

fit<-lme(y™~ time,random=1ist (Id=pdIdent(~Z-1),subject=pdSymm(~ time),

subject=pdIdent (~Z.subject-1)))
subject=pdIdent (~Z.subject-1) specifies a common diagonal covariance matrix for the
deviations from linearity, Zlevk(xi,- — Ki)+ U ~N(0,02).

A.2.1. R code
Z.block<-list(list(Id=pdIdent(~Z.total-1)),list(case=pdSymm(~time)),
list(case=pdIdent(~Z.subject-1)))
Z.block<-unlist(Z.block,recursive=FALSE)
data.fr<-groupedData(y~X[,-1] |rep(1,length=1length(y)),
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data = data.frame(y,X,Z,Z.subject,case))
fit<-lme(y~X[,-1] ,data=data.fr,random=Z.block)

A.3. Factor by curve interactions

We know fit model (8), y;j = f-(xi;) + gi(x;;) + &;, in order to fit a separate curve mean
curve for each therapy group, for simplicity, we assume a common variance parameter for all
curves:

options(contrasts=c(“contr.treatment”, “contr.poly?”))
fit<-lme(y  treatment*time,random=list (treatment=pdIdent(~Z-1),
subject = pdSymm(~time),subject=pdIdent(~Z.subject-1)))

options(contrasts=c(“contr.treatment”, “contr.poly”)) specifies the constrains used
to ensure the identifiability of the model. We choose to set the first level of each factor
included in the model equal to 0, y ~ treatment*time fits a separate fixed slope and intercept
for the height of children receiving each therapy and treatment=pdIdent(~ Z-1) specifies a
common variance parameter, i.e. a common smoothing parameter, but the shape of the fitted
curves is different for each group, treatment= indicates that matrix Z is to be split into
blocks, with each block corresponding to a different group (since Z has 40 columns we have
a total of 120 random coefficients for group curves).

A.3.1. R code.

X<-model.matrix(y™~ treatment*time)

Z.block<-list(list(treatment=pdIdent(~Z.total-1)),list(case=
pdSymm(~time)) ,list (case=pdIdent(~Z.subject-1)))

Z.block<-unlist(Z.block,recursive=FALSE)

data.fr<-groupedData(y~X[,-1] |rep(1,length=1length(y)),

data=data.frame(y,X,Z,Z.subject,case))
fit<-lme(y~X[,-1] ,data=data.fr,random=Z.block)

One of the advantages of using lme() function in S-PLUS and R is that we do not need to
create the full matrix Z as described in Section 2. We only need to work with a matrix of
size 1988 x40 or 1988 x 10 instead of a matrix of size 1988 x 2484 (since we have 2484
random effects in this last model: 120 for factor by group interaction, 394 for random slopes
and intercepts and 1970 for departures from linearity), working with so large matrices would
be almost impossible. Other packages such as SAS creates full Z matrix, in this case, the
number of knots for the individual curves should be reduced to be able to fit the model.
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