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SUMMARY

We present a simple semiparametric model for �tting subject-speci�c curves for longitudinal data.
Individual curves are modelled as penalized splines with random coe�cients. This model has a mixed
model representation, and it is easily implemented in standard statistical software. We conduct an
analysis of the long-term e�ect of radiation therapy on the height of children su�ering from acute
lymphoblastic leukaemia using penalized splines in the framework of semiparametric mixed e�ects
models. The analysis revealed signi�cant di�erences between therapies and showed that the growth rate
of girls in the study cannot be fully explained by the group-average curve and that individual curves
are necessary to re�ect the individual response to treatment. We also show how to implement these
models in S-PLUS and R in the appendix. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: linear mixed models; restricted likelihood ratio tests; penalized splines; acute lympho-
blastic leukaemia

1. INTRODUCTION

Longitudinal data arise frequently in many medical and biological applications. They generally
involve a collection of data at di�erent time points for several subjects, and they are character-
ized by the dependence of repeated observations over time within the same subject. The basic
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random-e�ects models for longitudinal data represent each individual as the sum of a popula-
tion mean which depends on time and is modelled as �xed e�ect, and a low degree polynomial
with random coe�cients to model the individual variation. This approach yields a mixed ef-
fects model which provides a �exible framework to analyse these type of data [1]. In many
situations this parametric assumption is not appropriate.
In many situations, the objective of a longitudinal study is to describe how the response

variable is a�ected by time and other covariates, and the features of the individual pro�les.
The time course is often too complicated to model parametrically, this is the reason why in
recent years there has been increasing interest in non-parametric analysis of longitudinal data
and more speci�cally in non-parametric subject-speci�c curves. Early work in this context
[2, 3] proposed a semiparametric mixed model for longitudinal data and used di�erent types
of smoothers (kernels, smoothing splines, etc.) to estimate the mean population curve, but
random e�ects were modelled by parametric functions. Zhang et al. [4] extended this work
by considering a more general class of semiparametric stochastic models by accounting for
the within-subject correlation using a stationary or non-stationary Gaussian process, though
they did not consider smooth curves for individual subjects. Brumback and Rice [5] modelled
both population mean and subject-speci�c curves non-parametrically with smoothing splines
and used their mixed model representation to present a uni�ed approach for these types of
models. However, they ran into computational problems because they assumed �xed slopes
and intercepts for the subject-speci�c curves. Rice and Wu [6] partially solved this problem
by modelling individual curves as spline functions with random coe�cients. However, in their
low-rank spline basis approach the number and location of the knots used to construct the basis
became an important issue. Consequently, the �t of their models involved the use of some
selection criteria to choose these parameters. More recently Guo [7] took a functional data
analysis approach by introducing functional random e�ects which are modelled as realizations
of a zero-mean stochastic process. He also used the connection between smoothing splines
and mixed models for �tting and estimation of his model. However, Guo [7] also faced
computational problems due to large matrices (since smoothing splines use as many knots
as data points), and consequently developed a sequential estimation procedure using Kalman
�ltering [8].
Our approach is a trade-o� between spline regression (too dependent on number and

position of knots) and smoothing splines (too computationally intensive with large data sets).
We use low-rank smoothers (as in Reference [6]) with a penalty approach [9]. We also use
the equivalence between a penalized smoother and the optimal predictor in a mixed model
[10–12] to present a uni�ed approach for model estimation. The penalty approach relaxes
the importance of the number and location of the knots and the use of a low-rank smoother
solves the computational problems of other approaches when analysing large data sets. The
mixed model approach allows one to use existing statistical software and simplify the �t of
otherwise complicated models.
The paper is organized as follows: Section 2 presents a general semiparametric mixed model

for longitudinal data based on penalized splines and their correspondence with the optimal
predictor in the mixed models. Details on estimation and inference about the parameters are
given in Section 3. The models proposed are illustrated in Section 4 with the analysis of data
from children su�ering from acute lymphoblastic leukaemia (ALL). The paper concludes with
a brief discussion in Section 5 and an appendix where we show in detail how to implement
these models in S-PLUS and R.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153–1167
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2. SEMIPARAMETRIC MIXED MODELS FOR LONGITUDINAL DATA

Mixed models are the most widely used method for the analysis of longitudinal data. However,
the parametric assumption in the linear mixed model may not always be appropriate, and in
many longitudinal studies the response should be modelled as a non-linear function of time
for each individual.
We propose the penalized spline model to model the deviation of each subject curve from

the population average. The correspondence between the penalized spline smoother and the
optimal predictor in a mixed model allows us to take advantage of the methodology and
software existent for mixed model analysis, and makes possible a simple implementation of
otherwise complicated models. We will illustrate the models proposed with the analysis of
the data collected on children su�ering from ALL. Obesity and short stature are common
late e�ects for childhood ALL and treatments are aimed to minimize the side e�ects without
compromising e�cacy. In one of the clinical trials carried out at Dana Farber Cancer Institute
(Boston, U.S.A.) (see Reference [13] for a detailed description) a total of 618 children were
treated between November 1987 and December 1995 with three di�erent central nervous
system therapies: intrathecal therapy alone (no radiation), intrathecal therapy with conventional
cranial radiation, and intrathecal therapy with twice daily radiation. Measurements on height
and weight were taken at diagnosis and approximately every 6 months thereafter. Previous
studies on the e�ects of cranial radiation on height suggested that radiation contributed to
decreased expected height, since cranial radiation has been associated with the development
of growth hormone de�ciency.
The purpose of this analysis is to evaluate the long-term e�ects of treatment on the children

height and on the individual growth trajectories.

2.1. Random intercept and slope models

Let yij denote the height of girl i; i=1; : : : ; m at age xij; j=1; : : : ; ni. A starting model for
these data could be the linear mixed model proposed by Laird and Ware [1]:

yij=�0 + �1xij +Ui + �ij (1)

where Ui ∼N(0; �2U ) and �ij ∼N(0; �2� ), �0 represents the overall mean and Ui is a random
intercept for girl i, which is treated as a random sample from the population of girls and
requires just a single parameter, �2U . We can write model (1) in matrix notation as

Y=XR+Zu+ U (2)

where

Y=



y11
...

ymnm


 ; X =



X1
...

Xm


 ; Xi =



1 ti1
...

...

1 tini
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Figure 1. Height of girls over time for each treatment received.

Z=



11 0 : : : 0
0 12 : : : 0
...

...
. . .

...
0 0 : : : 1m


 ; 1i =



1
1
...
1



ni×1

and R=[�0; �1]T

Figure 1 plots the height of girls as a function of age for three di�erent treatments. We can
see that the linearity assumption is not reasonable for ALL data, and in general, for height
of children in this range of age, and so (1) should be at least extended to

yij=f(xij) +Ui + �ij (3)

where f is a smooth function which re�ects the overall increasing trend of height along age.
We estimate f by a penalized spline. Let �1; : : : ; �K be a set of distinct knots in the range
of xij and x+ = max(0; x). The number of knots K is �xed and large enough (in this case
K =40) to ensure the �exibility of the curve. The knots are chosen as quantiles of x with
probabilities 1=(K+1); : : : ; K=(K+1). We use truncated lines as the basis for regression since
their simple mathematical form is very useful when formulating complicated models. More
complex basis such as B-splines and radial basis functions (with better numerical properties)
could also be used to �t these models and the programs presented in the appendix are easily

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1153–1167
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adapted to use any basis for regression. A penalized linear spline model for (3) is

yij= �0 + �1xij +
K∑
k=1
uk(xij − �k)︸ ︷︷ ︸

f(xij)

+Ui + �ij Ui ∼N(0; �2U ) �ij ∼N(0; �2� ) (4)

For given values of �2U and �
2
� , the estimates of (R; u) are obtained by minimizing the penalized

least squares:
m∑
i=1

ni∑
j=1

{yij − f(xij)−Ui}2 + �uTu+ (�2� =�2U )UTU

where the smoothing parameter � controls the amount of smoothing of f, i.e. a value of �=0
is equivalent to ordinary least squares, while with larger values of �, the term �uTu looks after
the overparametrization of the regression function by placing a penalty on the smoothness
of the uk , yielding smoother �tted curves. The penalized spline smoother corresponds to
the optimal predictor in a mixed model framework assuming uk ∼N(0; �2u) and �=�2� =�2u.
Brumback et al. [10], Currie and Durb�an [11] and Wand [12], among others, discuss the mixed
model representation of penalized splines. This enables us to write (4) as a semiparametric
mixed model similar to (2) where now

Z=




Z1 11 0 : : : 0
Z2 0 12 : : : 0
...

...
...

. . .
...

Zm
...

... : : : 1m


 ; Zi=



(ti1 − �1)+ · · · (ti1 − �K)+

...
. . .

...
(tini − �1)+ : : : (tini − �K)+




u= [u1; : : : ; uK ; U1; : : : ; Um]T and G=Cov(u)=

[
�2uI 0

0 �2U I

]

In this model, the deviation of the ith girl is modelled through a random intercept. This is
quite simplistic and will usually not be realistic since it assumes that the growth curves are
parallel. A simple extension is to assume that the subject-speci�c di�erences are straight lines:

yij=f(xij) + ai1 + ai2xij + �ij �ij ∼N(0; �2� ) (ai1; ai2)T ∼N(0;�) (5)

which in matrix notation becomes

Y=XR+Zu+ U

Z=



Z1 X1 0 : : : 0
Z2 0 X2 : : : 0
...

...
...

. . .
...

Zm 0 0 : : : Xm


 ; u=[u1; : : : ; uK ; a11; a12; : : : ; am1; am2]T

G=Cov(u)=


 �2uI 0
0 blockdiagonal

16i6m
�
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Another point worth mentioning is that we allow for complex departures from the common
linear component, since � is an unstructured 2× 2 matrix. The alternative is to assume that
the subject-speci�c intercepts and slopes are independent, and hence that � is diagonal, and
assumption that we do not recommend. In the �rst instance, if one assumes that � is diagonal
in the original parameterization ai1 + ai2xij, then they will not be independent if the x’s become
centred at their mean, as might reasonably be done for numerical stability. Previous papers
[7, 14] propose the use of this covariance structure, but the authors do not use it in their
examples and do not show how to implement it in the usual statistical packages; in the
appendix we show how to implement it in S-PLUS and R.

2.2. Subject-speci�c curves

The most �exible models are those that allow for the subject-speci�c di�erences to be non-
parametric functions (see for example Reference [15]). This can be done using penalized
splines as follows:

yij=f(xij) + gi(xij) + �ij; �ij ∼N(0; �2� )

gi(xij)= ai1 + ai2xij +
K∑
k=1
vik(xij − �k)+; (ai1; ai2)T ∼N(0;�) vik ∼N(0; �2v)

(6)

This model is an extension of (5) since in that model, the individual trajectories were lin-
ear, ai1 + ai2xij, and in (6) each subject-speci�c curve has two components: a linear (similar
to (5)) and a non-linear part,

∑K
k=1vik(xij − �k)+, which allows more �exibility. Both com-

ponents are random, di�erent from the approach taken by Brumback and Rice [5]. Though
model (6) is complex, it is easily described in the mixed model framework as

Y=XR+Zu+ U with

Z=



Z1 X1 0 : : : 0 Z1 0 : : : 0
Z2 0 X2 : : : 0 0 Z2 : : : 0
...

...
...

. . .
...

...
...

. . .
...

Zm 0 0 : : : Xm 0 0 : : : Zm




u=[u1; : : : ; uK ; a11; a12; : : : ; am1; am2; v11; : : : ; vmK ]T

G=Cov(u)=



�2uI 0 0
0 blockdiagonal �

16i6m

0 0 �2vI




(7)

2.3. Factor by curve interactions

One of the purposes of the study carried out with children su�ering from ALL was to compare
the long-term e�ects of the three di�erent therapies, so we might be interested in �tting a
separate mean curve for children receiving each therapy. To do that we use an interaction
model in which a categorical factor interacts with a continuous predictor, so that model (6)
can be extended to

yij=fzi(xij) + gi(xij) + �ij
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yij = �0 + �1xij +
K∑
k=1
uk(xij − �k)+ +

L∑
l=2
zil(�0l + �1lxij) +

L∑
l=2
zil

{
K∑
k=1
wlk(xij − �k)+

}

+ ai1 + ai2xij +
K∑
k=1
vik(xij − �k)+ + �ij

uk ∼N(0; �2u); wlk ∼N(0; �2w); vik ∼N(0; �2v); �ij ∼N(0; �2� ) (8)

where zil=1 if zi= l and 0 otherwise for l=2; 3. For simplicity, we have assumed a common
variance parameter for all curves, i.e. Var(wlk)=�

2
w, l=2; : : : ; L. A common variance means

that all curves have equivalent smoothness, but the random e�ects are independent from
function to function, i.e. the curves are di�erent but with the same amount of smoothing.
In order for the �xed e�ects to be identi�ed we need to put constrains on �jl, we assume
�01 = �11 = 0 (as in Reference [16]) which means that �0 + �1xij +

∑K
k=1 uk(xij − �k)+ is the

�tted curve for l=1 and �0l+ �1lxij+
∑K

k=1 w
l
k(xij −�k)+ is the di�erence of the �tted curves

for the therapies 2 (standard radiation) and 3 (hyper-fractionated radiation) and therapy 1
(no radiation). The mixed model representation of this model is similar to (6) but now the
part of Z corresponding to the overall mean is block-diagonal and each block corresponds to
the truncated line basis for children receiving each therapy.

3. INFERENCE

The linear mixed model representation of penalized splines is the foundation for �tting the
models described in Section 2. A standard estimation criterion for variance components is the
restricted maximum likelihood (REML) of Patterson and Thompson [17]. For example, given
model (6)

‘R(�2u; �
2
v ; �

2
� ) =

1
2 log |V| − 1

2 log |XTV−1X|
− 1

2y
T(V−1 −V−1X(XTV−1X)−1XTV−1)y (9)

where V=ZGZT + �2� I and G is de�ned in (7). The vector of parameters R and the random
coe�cient vector u can be determined using best prediction:

R̂= (XTV−1X)−1XTV−1y

û= ĜZTV̂
−1
(y −X R̂)

Testing the adequacy of a parametric model against a non-parametric alternative is not straight-
forward. For example, in model (3) we might be interested in testing whether the function
describing the population mean is a line or there is some degree of nonlinearity. This is
equivalent to testing

H0 :�2u=0 vs H1 :�
2
u¿0
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The main problem we face here is that the parameter of interest is on the boundary of the
parameter space, [0;∞), so the restricted likelihood ratio statistic

RLRT=sup
H1
REL(�; �2� ; �

2
U ; �

2
u)− sup

H0
REL(�; �2� ; �

2
U ; �

2
u) (10)

cannot be compared with a �21. Self and Liang [18] and Stram and Lee [19] discussed the
asymptotic distribution of RLRT and showed that under the assumption that y can be parti-
tioned into independent subvectors and the number of subvectors tends to in�nity, (10) has
a 1
2�
2
q +

1
2�
2
q+1 asymptotic distribution, where q is the number of �xed e�ects under the null

hypothesis. However, this assumption does not hold under the alternative hypothesis in this
type of semiparametric mixed models, and the chi-squared mixture approximation can be
poor [20]. Crainiceanu and Ruppert [21] derived the case of testing polynomial regression
against a general alternative modelled by penalized splines for one variance component and
Crainiceanu et al. [22] studied the case where there are several variance components. These
authors also suggest the use of simulation to determine the null distribution of the likelihood
ratio test statistic. The idea is to estimate the model parameters under the null hypothesis, then
simulate the distribution of the likelihood ratio test under the null model at the parameters.
Crainiceanu et al. [22] give fast simulation algorithms in some cases, however, the complexity
of these algorithms increases linearly with the number of subjects and the �tting of complex
models to a large number of simulated data sets can become computationally infeasible. The
complexity of the model proposed in this paper, and the large number of observations in the
data set makes it di�cult to implement the methods proposed above. As a guide line, we will
compare the RLRT with the chi-squared mixture approximation.

4. APPLICATION TO THE ALL DATA

We used the semiparametric mixed models described in Section 2 to analyse the ALL data.
We concentrate on analysis of 197 girls diagnosed with ALL between 2 and 9 years of
age. Height was measured at di�erent times and a total of 1988 observations were obtained.
The number of observations per girl ranged from 1 to 21. Two nested models with 5 and
6 variance components were �tted to the data, namely models (5) extended with factor by
curve interaction and model (8):

yij =fzi(xij) + ai1 + ai2xij + �ij

yij =fzi(xij) + gi(xij) + �ij

where yij is the height in centimeters of the ith girl at age j (in years), for i=1; : : : ; 197
and j between 1 and 21, f1 is the group-average curve for girls receiving intrathecal therapy
alone, f2 for girls receiving intrathecal therapy with conventional cranial radiation and f3 for
girls receiving intrathecal therapy with twice daily radiation, ai1 and ai2 are random intercepts
and slopes, respectively, and gi(xij) is the subject-speci�c deviation of the ith girl from the
group-average curve. We used REML for variance component estimation and the function
lme() implemented in S-PLUS 2000 and R 1.8 to �t the model. Details can be found in the
appendix.
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Figure 2. Estimates of the population mean response curves (left) and contrast curves with
pointwise con�dence bands (right).

In our analysis, we are interested in estimating mean treatment e�ects and the individual
responses to treatment. In model (8), we assume that curves describing the e�ect of treatment
have equivalent smoothness. We can test this assumption which is equivalent to the hypothesis:

H0 :�2w1 =�
2
w2 =�

2
w3 =�

2
w

The appropriate way to proceed would be to use parametric bootstrap to obtain the distribution
of the likelihood ratio test, however, as we mentioned above, the computational time needed to
�t the null model to a large number of simulated data sets (between 10 000 and 100 000) would
make the bootstrap method infeasible. The distribution theory or Monte Carlo approaches
are still an open problem. As a guideline, we compare the −2 log(RLRT)=0:7719 with
1.642 which is the 90th percentile of 1

2�
2
0 +

1
2�
2
1 (the distribution of −2 log(RLRT) under the

assumption of independent y’s). This result suggests that we do not need separate variance
components for each curve. Figure 2 (left) shows the estimates of the population curves for
all three groups in model (8). It can be seen that all groups have similar height patterns, but
the girls not receiving radiation (treatment 1) are taller than girls in the other two groups.
In particular, the group not receiving radiation seems to be signi�cantly taller when they
reach adolescence. To compare the three average-curves we re�t the model with one common
average curve, the null hypothesis corresponding to

H0 : �jl=0 j=0; 1 l=1; 2; 3 and �2w=0

for �jl and �2w de�ned in (8). We compare the −2 log(RLRT)=30:11 with the 90th percentile
of 1

2�
2
2 +

1
2�
2
3, 5.528. This result shows a high degree of statistical signi�cance, implying that

the height of girls is a�ected by the treatment received. This result supports the �ndings
that associate cranial radiation with growth hormone de�ciency [24, 25]. Crainiceanu and
Ruppert [21] test for �xed and random e�ects simultaneously in models with one variance
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Figure 3. Estimates of random e�ects for each girl.

component, further research needs to be done to extend this work to the present case where
there are several variance components. In the right panel of Figure 2, we present the contrast
curves, f̂2(xij)− f̂1(xij) and f̂3(xij)− f̂1(xij). The plot shows how the height of girls receiving
conventional cranial radiation (treatment 2) is lower, at all ages than the height of girls
not receiving radiation (treatment 1). The method presented in Ruppert et al. [15] could be
extended to compute simultaneous con�dence bands for these curves in an e�cient way. The
software package ASREML [27] also �ts these models and handles con�dence bands around
curves.
To test whether or not the individual response to treatment is linear we compare models (5)

and (6). Figure 3 shows the estimates of random e�ects corresponding to the subject-speci�c
curves in model (8). It shows that the between-girls variation is considerable and that a linear
random e�ect to describe the within-subject variation would not be appropriate. Comparing
models (5) and (6) (extended with factor by curve interaction) is equivalent to testing:

H0 :�2v =0 vs H1 :�
2
v ¿ 0

Again, it would be preferable to use Monte Carlo simulations, but given the complexity of the
model we compare the value of −2 log(RLRT)=202:99 to the 90th percentile of a 1

2�
2
0 +

1
2�
2
1,

1.642. This result indicates that the deviation of the each girl from the population average
needs to be modelled non-parametrically. Figure 4 shows individual and treatment group
curves for six girls. The average group curves do not follow the response of individual girls
and are di�erent from the individual curves, showing the loss of information about individual
trajectories when subject-speci�c curves are not included in the model. The apparent near
interpolation of the �tted curves is due to the di�erence in the scale of the height trend
compared with the error variance. One last remark is the fact that not accounting for the
individual variation correctly can have an impact on the comparison of the average-curves for
each therapy. In this example, there was no signi�cant di�erence between the average-curves
for each group when the model �tted only included a random intercept and did not include
subject-speci�c trajectories.
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Figure 4. Plot of individual curves (solid lines) with 95 per cent con�dence intervals together with
treatment average group curves (dashed lines) and observed heights for comparison.

5. CONCLUSIONS

We have provided a �exible and simple method of �tting individual curves in longitudinal
studies. The mixed model representation of penalized splines allows one to take advantage
of the existing methodology for mixed model analysis and the use of software such as PROC
MIXED in SAS and lme() in S-PLUS and R. Our use of low-rank smoothers with penalties
and random subject-speci�c curves solves the computational problems of previous approaches
[5, 7] based on smoothing splines and reduces signi�cantly the time needed to �t the models.
Our approach allows a fast �t of complex models to longitudinal problems with large number
of individuals, the �t of model (6) with 197 subjects and 1988 observations took less than a
minute on a 1.20GHz Pentium III PC.
Our analysis of ALL data indicates that the growth of girls who did not receive radiation

was not slowed down by the therapy. In our data, girls not receiving radiation were on average
taller than girls receiving standard or twice daily radiation, and this di�erence increased when
girls reached puberty. The �exibility of these non-parametric models captured the relative
growth e�ects of the three di�erent therapies on each girl, showing that the growth rate of
the girls in the study cannot be fully explained by the group-average curve and that a linear
function would not be appropriate to describe the long-term e�ect of therapy on height. The
models presented here can be easily extended to more general models, for example, to account
for correlation among errors.
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APPENDIX A: IMPLEMENTATION IN STATISTICAL SOFTWARE

Statistical packages such as S-PLUS, R and SAS have generic functions which �t linear mixed-
e�ects models and allow for nested random e�ects. The SAS procedure PROC MIXED and the
lme() function in S-PLUS and R allow the �tting of complex mixed models and so, obtain
easily estimates of �xed and random e�ects and variance components. Below we describe the
�tting of models (3), (6) and (8) to ALL data. This data set is con�dential, so it cannot be
made available, however, a simulated data set and the programs to �t these data with SAS,
S-PLUS and R are available on request.

A.1. Random slope and intercept models

We start by giving some code to set up the basic inputs of the programs. The response
variable, factors and independent variables are part of a S-PLUS data set, ALL:

attach(ALL)
y < -ALL$height
time < -ALL$age
treatment < -ALL$xrtrand
subject<-ALL$child

We follow Ruppert [26] to set the number and location of the knots used to compute the
basis of the penalized spline for the overall mean:

K < -max(5,min(floor(length(unique(time))/4),40))
knots < -quantile(unique(time),seq(0,1,length=K+2))[-c(1,K+2)]

Set up design matrices and truncated lines basis:

X < -model.matrix(y∼time)
Z < -outer(time,knots,‘‘-’’)
Z < -Z*(Z>0)
n < -length(y)

The �t of model (3), yij=f(xij) +Ui + �ij is given in two line commands:

Id<-factor(rep(1,length(y)))
fit < -lme(y∼time,random=list(Id=pdIdent(∼Z-1),subject=pdIdent(∼1)))

Id= indicates that there is no grouping structure for the design matrix Z, i.e. there is a single
curve for all therapy groups; pdIdent speci�es that the variance structure of the random
e�ects is a multiple of the identity, and subject=pdIdent(∼ l) indicates that each child has
a di�erent random coe�cient (a total of 197), but with a single variance component for all
of them. The estimated variance components and estimates of �xed and random e�ects are:

sig.sq.hat<-fit$sigma^2
sig.sq.U.hat<-sig.sq.hat*exp(2*unlist(fit$modelStruct)[1])
sig.sq.u.hat<-sig.sq.hat*exp(2*unlist(fit$modelStruct)[2])
beta.hat<-fit$coeff$fixed
u.hat<-unlist(fit$coeff$random)
f.hat<-X % * % beta.hat+Z % * % u.hat[1:ncol(Z)]
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d<-dim(fit$fitted)
fitted.val<-fit$fitted[,d]

Model (5), yij=f(xij) + ai1 + ai2xij + �ij �ts a speci�c slope and intercept for each girl:

fit<-lme(y∼time,random=list(Id=pdIdent(∼Z-1),subject=pdSymm(∼time)))

The command subject=pdSymm(∼ time) speci�es a 2 × 2 symmetric positive-de�nite ma-
trix covariance structure for the random intercept and slope, ai1 + ai2xij (ai1; ai2)T ∼N(0;�),
identical but separate for each subject.

A.1.1. R code
library(nlme)
Z.block<-list(list(Id=pdIdent(∼Z-1)),list(subject=pdIdent(∼1)))
Z.block<-unlist(Z.block,recursive=FALSE)
data.fr<-groupedData( y∼ X[,-1]|rep(1,length=length (y)),data =

data.frame(y,X,Z,subject))
fit<-lme(y∼X[,-1],data=data.fr,random=Z.block)

For model Model (5),

Z.block<-list(list(Id=pdIdent(∼Z-1)),list(subject=pdSymm(∼time)))
Z.block<-unlist (Z.block,recursive=FALSE)
fit<-lme(y∼X[,-1],data=data.fr,random=Z.block)

A.2. Subject-speci�c curves

We now set up truncated lines basis for subject-speci�c curves. The number of observations
within subject is at most 21 and the number of individuals is 197, now we will use 10 knots
(instead of 40) to construct the basis for each subject.

K.subject<-10
knots.subject<-quantile(unique(time),seq(0,1,length=K.subject+2)

)[-c(1,K.subject+2)]
Z.subject<-outer(time,knots.subject,‘‘-’’)
Z.subject<-Z.subject*(Z.subject>0)

The �t of model (6), yij = f(xij) + gi(xij) + �ij is:

fit<-lme(y∼time,random=list(Id=pdIdent(∼Z-1),subject=pdSymm(∼time),
subject=pdIdent(∼Z.subject-1)))

subject=pdIdent(∼ Z.subject-1) speci�es a common diagonal covariance matrix for the
deviations from linearity,

∑K
k=1vk(xij − �k)+ vk ∼N(0; �2v).

A.2.1. R code
Z.block<-list(list(Id=pdIdent(∼Z.total-1)),list(case=pdSymm(∼time)),

list(case=pdIdent(∼Z.subject-1)))
Z.block<-unlist(Z.block,recursive=FALSE)
data.fr<-groupedData(y∼X[,-1]|rep(1,length=length(y)),
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data = data.frame(y,X,Z,Z.subject,case))
fit<-lme(y∼X[,-1],data=data.fr,random=Z.block)

A.3. Factor by curve interactions

We know �t model (8), yij=fzi(xij) + gi(xij) + �ij, in order to �t a separate curve mean
curve for each therapy group, for simplicity, we assume a common variance parameter for all
curves:

options(contrasts=c(‘‘contr.treatment’’,‘‘contr.poly’’))
fit<-lme(y∼treatment*time,random=list(treatment=pdIdent(∼Z-1),

subject = pdSymm(∼time),subject=pdIdent(∼Z.subject-1)))

options(contrasts=c(‘‘contr.treatment’’,‘‘contr.poly’’)) speci�es the constrains used
to ensure the identi�ability of the model. We choose to set the �rst level of each factor
included in the model equal to 0, y∼ treatment*time �ts a separate �xed slope and intercept
for the height of children receiving each therapy and treatment=pdIdent(∼ Z-l) speci�es a
common variance parameter, i.e. a common smoothing parameter, but the shape of the �tted
curves is di�erent for each group, treatment= indicates that matrix Z is to be split into
blocks, with each block corresponding to a di�erent group (since Z has 40 columns we have
a total of 120 random coe�cients for group curves).

A.3.1. R code.
X<-model.matrix(y∼treatment*time)
Z.block<-list(list(treatment=pdIdent(∼Z.total-1)),list(case=

pdSymm(∼time)),list(case=pdIdent(∼Z.subject-1)))
Z.block<-unlist(Z.block,recursive=FALSE)
data.fr<-groupedData(y∼X[,-1]|rep(1,length=length(y)),

data=data.frame(y,X,Z,Z.subject,case))
fit<-lme(y∼X[,-1],data=data.fr,random=Z.block)

One of the advantages of using lme() function in S-PLUS and R is that we do not need to
create the full matrix Z as described in Section 2. We only need to work with a matrix of
size 1988× 40 or 1988× 10 instead of a matrix of size 1988× 2484 (since we have 2484
random e�ects in this last model: 120 for factor by group interaction, 394 for random slopes
and intercepts and 1970 for departures from linearity), working with so large matrices would
be almost impossible. Other packages such as SAS creates full Z matrix, in this case, the
number of knots for the individual curves should be reduced to be able to �t the model.
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